
Building NLP
classifiers
Vlado Boža
FMFI UK
Central Europe AI (CEAI)

Job salary prediction | Kaggle

Not so good solution attempts
● Measuring job similarity

○ For kNN
○ As SVM kernel

● Very tempting (so much stuff to play with), but also not very good

● Also usually awfully slow during prediction, unless you use something like:
https://github.com/searchivarius/NMSLIB

Reasonable baseline
● Linear regression on top of bag of bigrams

● Text: “C++ programmer in London”

● Dictionary: {“c++ programmer”: 3, “programmer in”: 6, “in London”: 1, …}

● Input for regression:
○ [0, 1, 0, 1, 0, 0, 1, ….]

Regression on top of bigrams
● Pros:

○ Stupidly easy to implement (even from scratch in C++) (5 lines in scikit-learn)
○ Fast during prediction

● Surprise
○ L2 regularization worked better than L1

Pushing it further
● Neural nets are just extension of linear regression

● Input has high dimension but it is sparse
○ Need support for sparse matrices for efficient implementation of backprop
○ Easy to get in 2017, hard in 2013 (used custom c++ implementation during that time)
○ Now e.g. embedding layer from Keras does the trick

● FastText from facebook does very similar thing
○ https://github.com/facebookresearch/fastText

Neural architecture

More tricks
● Feature hashing

○ Saves memory for dictionary
○ Instead of {“c++ programmer” -> 4742, ...}
○ We use hash function from strings (features) to numbers
○ Collisions might happen, but ML algos don’t care

○ Scikit-learn: HashingVectorizer/FeatureHasher
○ Not used in kaggle competition, but later in prod

More tricks
● Dropout

○ Only used on input
○ Think about it as dataset augmentation

● Ensembling (averaging multiple predictions)
○ Stabilizes model output
○ Boosts performance
○ Standard way:

■ Train multiple neural nets with different
● Initializations / order of samples / bootstrapped datasets

○ Poor man version: average output of neural nets, after each k iterations of training (after you
get reasonable convergence)

Winner and 3rd place solution
● Winner

○ Big neural net on top of bag of words (15000 words)
○ 3 layers with 5000-1000-1000 hidden units

● 3rd place
○ Classification to several buckets of salary
○ Models distribution of salaries better

2017s solution outlook - convnets

Glossary
● DCVC - USA VC fund focused on AI

● CEAI - Central Europe AI Incubator (backed by DCVC)

● Raptor - one of CEAI startups

Raptor

Raptor NLP problems
● Detecting adverse news linked to person (this talk)

● Identity matching

● Ranking results

Detecting adverse news
Simple IR approach (name and keyword in proximity) works pretty well

● Reasonably high recall
● Decent precision

False positives

● Judge John Smith sentenced James Doe for money laundering.
● Amy Smith is accused of murder of her brother John Smith.
● John Smith suffered cardiac arrest.

Make predictor for this.

Other problems
● Must work in crazy languages

○ Chinese
■ No upper case
■ No word boundaries
■ Simplified vs. traditional

○ Arabic

● Regulators

Task definition
● Entity centric sentiment

○ High coverage, one classifier takes it all
○ Vague, not easy to interpret

● Mining specific relations
○ E.g.: (person, legal action, crime)
○ Bad coverage
○ Clearly defined

Metrics specification
● Many metrics which you might optimize

○ AUC, Log likelihood, accuracy, precision, recall, specificity, F1, …

● One reasonable approach
○ Optimize one metric, while having constraints on others
○ Optimize precision, while recall > 99%

● Check Machine Learning Yearnings from Andrew Ng

(Lack of) Training data
● Distant supervision

○ Use heuristics to build training dataset

● Bootstrapping
○ Start with small dataset
○ Use classifier to generate bigger dataset (from areas where classifier is confident)
○ Repeat

● Semisupervised learning
○ Use power of unlabeled data combined with few labels
○ Quite successful in google:

https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html

Distant supervision in Raptor
● Positive examples

○ Gather list of persons with adverse news
○ Run names through search engine
○ Gather their mentions alongside bad keywords

● Negative examples
○ Random sentences

■ Does not catch tough sentences
○ Need negative examples which are similar to positive ones (like “Amy murdered John”)

■ Hard to get

Negative examples
● Get list of judges and attorneys (usually mentioned around adverse topics, but

not affected by them)

● Simple rules like: “X said”

● Syntactic parsing and rules based on that
○ This is usually slow in prediction time, but useful here

● Some sources have different rate of real adverse news vs things looking like
adverse news (news pages vs court proceedings)

Distant supervision heuristics
● Combination of multiple rules (even previous version of classifier)

● Inspect random samples of results of heuristics. If they are like 90% accurate,
they can be safely used.

Distant supervision caveats
● Don’t run cross validation on distant supervision data directly

● Use validation set with correct labels inputted by hand
○ Size of training set is driven by model size -> this needs to be huge
○ Size of validation set is driven by statistical error -> this can be small, but ...

Modelling approaches
● Features + logistic regression

○ Time spent in featurizing (usually productive)
○ Features

■ Bag of words / bigrams / skipgrams
■ Words around mentioned entity

● Also skip if there are multiple entities next to each other
○ John, Amy and George were arrested ...

○ Easy to understand and debug
○ Fast prediction time

Modelling approaches
● Deep learning (RNN/CNNs)

○ Saves time on feature engineering
○ Time spent playing with neural architecture (usually not so productive)
○ Pretrained word embeddings help a lot

● Similar performance currently (at 99% recall, we throw out around 70% of
false positives from previous IR filter)

Lessons learned
● Discipline needed

○ Playing with neural nets is tempting but not productive
○ Playing with distant supervision heuristics / features is sometimes boring, but brings results

● Classic industry approach works a lot
○ Read a lot of research papers
○ Implement baseline which lots of them compare to

● Real challenge is building models without good training data

● Tricky work is usually outside standard ML course syllabus
○ But right model choice is always important

Other open problems
● Mention detection (especially with weird Arabic names)

● Coreference

● Analysis of formatted text (tables, …)

