OpenMined

OpenMined is an open-source **community** focused on researching, developing, and elevating tools for secure, privacy-preserving, value-aligned artificial intelligence.

Key Activities

Awareness: Raise awareness of Secure, Private, & Value Aligned Al

Tools: Lower the barrier-to-entry by building open-source tools

• Community: We have really fun Hackathons...

Outline

- Why: the AI Business Model has privacy problems
- **How:** an Introduction to the Core Technologies of OpenMined
 - Federated Learning
 - Homomorphic Encryption
 - Multi-Party Computation
 - Gradient Marketplace

Roadmap & Demos

2. Train a model that transforms one dataset into another

AI Business Model

The A.I. Business Model

- Step 1: Acquire Data about people
- Step 2: Train a Model that predicts unknown facts about a person using known facts.
- Step 3: Sell the <u>Use</u> of that **Model** (the App)

Problems with the AI Business Model

- Step 1: acquire **Data** about people
 - **Privacy:** people lose control of their data
 - "Sensitive Products" don't get made

Problems

- Step 2: train a Model that predicts unknown facts about a person using known facts.
 - Contagious Privacy Loss: if one person reveals private information, AI can be used to reveal private information of others through prediction
 - Lack of Competition: there is very little market competition because most datasets are proprietary. (AI Inc. vs AI Corp.)
 - Unfair Predictions: corporate datasets only sample the target market (customers) of the company that acquired them, leading to biased AI predictions.

Problems

- data
- **Unknown Value of Data:** How valuable is any datapoint?
- unknown
- **Digital Assets Hard to Protect:** (i.e., pirated music)

Lost Natural Income: in practice, people are rarely compensated for their

Unknown Accuracy of Predictions: the quality of deployed models is

How do we solve these problems?

Train A.I. on data we cannot see

- **Privacy Win:** people wouldn't need to reveal their data

Outline

- Why: the AI Business Model has privacy problems
- **How:** an Introduction to the Core Technologies of OpenMined
 - Federated Learning
 - Homomorphic Encryption
 - Multi-Party Computation
 - Gradient Marketplace

Roadmap & Demos

Introduction to Federated Learning for Safe AI

Non-Federated Learning

Model

Jack's Data

Federated Learning for Safe AI

Joe's Data

Federated Learning for Safe AI

Federated Learning for Safe AI

Federated Learning for Safe AI

Federated Learning for Safe AI

Federated Learning for Safe AI

Federated Learning for Safe AI

Federated Learning for Safe AI

Open Source

Computer Cluster Parameter Server

Federated Learning for Safe AI

OpenMined

Federated Learning Blockchain Compute Grid

- Train A.I. on data we cannot see Federated Learning
 - Pro: the data is kept private
 - Theft: the A.I. is put at risk.
 - Privacy: Gradients reveal information about the data
 - Sensitive Product Problem

Train A.I. on data we cannot see without revealing the AI or its training updates to anyone?

- Train A.I. on data we cannot see without revealing the AI or its training updates to anyone?
 - Homomorphic Encryption
 - Multi-Party Computation

Introduction to

Homomorphic Encryption for Safe AI

Homomorphic Encryption for Safe AI

Homomorphic Encryp

Homomorphic Encryption for Safe

ti	D		
bic		<section-header></section-header>	
bic		<section-header><section-header></section-header></section-header>	
ΑΙ			

Homomorphic Encryption for Safe Al

2xCypher_ 0020220202

Cypher A + Cypher. 1011110210

Homomorphic Encryption for Safe AI

h	
r	

Homomorphic Decryptor

8

Homomorphic Decryptor

- you can only do some operations, such as addition or multiplication - you can do any operation, but only a few times unlimited number of any operation

 Partially Homomorphic Encryption (PHE) Somewhat Homomorphic Encryption (SHE) Fully Homomorphic Encryption (FHE)

Homomorphic Encryption for Safe AI

Homomorphic Encryption for Safe Al

Challenge: hide a number between 0 and 10 (our "plaintext") **Constraints:**

Somewhere between 0 and 100

Only we know what it is
You can add encrypted numbers together

Homomorphic Encryption for Safe Al

5 6 9 60 70 80 90 100

Homomorphic Encryption for Safe AI

Homomorphic Encryption for Safe AI

Homomorphic Encryption

Cypher Space

Without the secret key

Homomorphic Encryption for Safe AI

Federated Learning for Safe AI

Federated Learning for Safe AI

Federated Learning for Safe AI

Federated Learning for Safe AI

Al Inc.

Jane's Data

Jack's Data

Federated Learning for Safe AI

Al Inc.

Federated Learning for Safe AI

Al Inc.

Federated Learning for Safe AI

Al Inc.

Federated Learning for Safe Al

Al Inc.

optimized Model

Potential Solution

- Train A.I. on data we cannot see without revealing the AI or its training updates to anyone?
 - Homomorphic Encryption
 - Multi-Party Computation

Introduction to Multi-Party Computation

for Safe AI

Multi-Party Computation

$a = 5 \rightarrow$

Multi-Party Computation for Safe AI

Share \rightarrow [1, -3, 5, 0, 2] = shares a

Multi-Party Computation

Multi-Party Computation for Safe AI

Share \longrightarrow [1, -3, 5, 0, 2] = shares a

\rightarrow [2, -5, 8, -3, 1] = shares_b

Multi-Party Computation for Safe AI

\rightarrow [1, -3, 5, 0, 2] = shares_a \rightarrow [2, -5, 8, -3, 1] = shares_b

Person 3	Person 4	Person 5
s_a = 5 s_b = 8	s_a = 0 s_b = -3	s_a = 2 s_b = 1
s_c = 13	s_c = -3	s_c = 3

Multi-Party Computation for Safe AI

\rightarrow [1, -3, 5, 0, 2] = shares_a \rightarrow [2, -5, 8, -3, 1] = shares_b Person 3 Person 4 Person 5 s_a = 0 s_b = -3 s_a = 2 s_b = 1 s_a = 5 s_b = 8 s_c = 13 **s_c = -3 s_c = 3** Share Combiner 8

Multi-Party Computation+ Federated Learning

Federated Learning for Safe AI

Federated Learning

Federated Learning

Federated Learning

Potential Solution

- Train A.I. on data we cannot see without revealing the AI or its training updates to anyone?
 - Homomorphic Encryption
 - Multi-Party Computation

Potential Solution

- Train AI on data we cannot see without revealing that AI or its training gradients to anyone (FL + HE + MPC)
- Share the ownership of a trained AI such that its usefulness is public while its input data, contents, and output predictions are secret - even to the owners of the AI. (MPC)
- Price training data we cannot see competitively with other data which we also cannot not see (GT + STAKING + SC + PNP)

Introduction to

Gradient Marketplaces for Safe AI

Outline

- Why: the AI Business Model has privacy problems
- How: an Introduction to the Core Technologies of OpenMined
 - Federated Learning
 - Homomorphic Encryption
 - Multi-Party Computation
 - Gradient Marketplace

Roadmap & Demos

Status Update

- January Hackathon: 29 Cities 400+ online 70+ In Person Growth Stats: 2400 Members in Slack - 145 GitHub Committers **Recent Milestones: PyTorch over Peer-to-Peer** - the foundation of Secure/Private AI OpenMined Grid - UK model trained in Canada in 15 secs - Jan 24
 - Reinforcement Learning worked with Unity's "ML Agents" Team

- Federated Learning via PyTorch
- MPC Training via PyTorch
- Rapid Grid Payment via Coinbase
- Private Application Integration

Appendix

Introduction to

Functional Encryption for Safe Al

Functional Encryption

a = [1, 2, 3, 4, 5] --->

Functional Encryption for Safe AI

Functional Encryptor

--> cypher_a

Functional Encryption

a = [1, 2, 3, 4, 5] → $b = [0, 1, 0, 0, 0] \rightarrow$

Functional Encryption for Safe AI

Functional Encryptor

--> cypher_a

Functional Encryptor

--> cypher_b

a = [1, 2, 3, 4, 5] --> $b = [0, 1, 0, 0, 0] \rightarrow$ cypher_a --> cypher b --->

Functional Encryption for Safe Al

