


OpenMined is an open-source community focused on 
researching, developing, and elevating tools for 

secure, privacy-preserving, value-aligned artificial intelligence.



◆ Awareness: Raise awareness of Secure, Private, & Value Aligned 
AI

◆ Tools: Lower the barrier-to-entry by building open-source tools

◆ Community: We have really fun Hackathons…

Key Activities



◆ Why: the AI Business Model has privacy problems

◆ How: an Introduction to the Core Technologies of 
OpenMined

◆ Federated Learning

◆ Homomorphic Encryption

◆Multi-Party Computation

◆ Gradient Marketplace

◆ Roadmap & Demos

Outline



AI Inc.

The AI Business Model
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2. Train a model that transforms one dataset into another
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◆Step 1:  Acquire Data about people

◆Step 2:  Train a Model that predicts unknown facts 
about a person using known facts.

◆Step 3:  Sell the Use of that Model (the App)

The A.I. Business Model



◆Step 1: acquire Data about people
◆ Privacy: people lose control of their data

◆ “Sensitive Products” don’t get made

Problems with the AI Business Model

AI Inc.



◆Step 2: train a Model that predicts unknown facts about a person using 
known facts.
◆ Contagious Privacy Loss: if one person reveals private information, AI can be 

used to reveal private information of others through prediction

◆ Lack of Competition: there is very little market competition because most 
datasets are proprietary. (AI Inc. vs AI Corp.)

◆ Unfair Predictions: corporate datasets only sample the target market 
(customers) of the company that acquired them, leading to biased AI predictions.

Problems



◆Step 3: sell the use of that Model (The App)
◆ Lost Natural Income: in practice, people are rarely compensated for their 

data

◆ Unknown Value of Data: How valuable is any datapoint?

◆ Unknown Accuracy of Predictions: the quality of deployed models is 
unknown

◆ Digital Assets Hard to Protect:  (i.e., pirated music)

Problems

AI Inc.

Big
Bank



How do we solve 
these problems?



◆ Train A.I. on data we cannot see

• Privacy Win: people wouldn’t need to reveal their data

Potential Solution



◆ Why: the AI Business Model has privacy problems

◆ How: an Introduction to the Core Technologies of 
OpenMined

◆ Federated Learning

◆ Homomorphic Encryption

◆Multi-Party Computation

◆ Gradient Marketplace

◆ Roadmap & Demos
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Federated Learning
Introduction to 
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for Safe AIFederated Learning
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Federated Learning for Safe AI

◆ Computer Cluster 
◆ Parameter Server

◆ Federated Learning
◆ Blockchain Compute Grid

Open Source



◆ Train A.I. on data we cannot see - Federated Learning

• Pro: the data is kept private

• Theft: the A.I. is put at risk.

• Privacy: Gradients reveal information about the data

• Sensitive Product Problem

Potential Solution



◆ Train A.I. on data we cannot see without revealing the AI or its 
training updates to anyone?

Potential Solution



◆ Train A.I. on data we cannot see without revealing the AI or its 
training updates to anyone?

• Homomorphic Encryption

• Multi-Party Computation

Potential Solution



Homomorphic Encryption
Introduction to 

for Safe AI
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for Safe AIHomomorphic Encryption

Homomorphic Encryption

◆ Partially Homomorphic Encryption (PHE) 
— you can only do some operations, such as addition or multiplication

◆ Somewhat Homomorphic Encryption (SHE) 
— you can do any operation, but only a few times

◆ Fully Homomorphic Encryption (FHE) 
— unlimited number of any operation



for Safe AIHomomorphic Encryption
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for Safe AIHomomorphic Encryption

0 1 2 3 4 5 6 7 8 9 10Plain 
Space

0 10 20 30 40 50 60 70 80 90 100Cypher  
Space

Homomorphic Encryption

Challenge: hide a number between 0 and 10 (our “plaintext”)
Constraints:
◆ Somewhere between 0 and 100 
◆ Only we know what it is 
◆ You can add encrypted numbers together 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◆ Train A.I. on data we cannot see without revealing the AI or its 
training updates to anyone?

• Homomorphic Encryption

• Multi-Party Computation

Potential Solution



Multi-Party Computation
Introduction to 

for Safe AI
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a = 5 Share  Splitter [ 1 , -3 , 5 , 0 , 2 ] = shares_a

Multi-Party Computation



a = 5 Share  
Splitter [ 1 , -3 , 5 , 0 , 2 ] = shares_a

Multi-Party Computation

b = 3 Share  Splitter [ 2 , -5 , 8 , -3 , 1 ] = shares_b
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a = 5 Share  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◆ Train A.I. on data we cannot see without revealing the AI or its 
training updates to anyone?

• Homomorphic Encryption

• Multi-Party Computation

Potential Solution



◆ Train AI on data we cannot see without revealing that AI or its 
training gradients to anyone  (FL + HE + MPC)

◆ Share the ownership of a trained AI such that its usefulness is 
public while its input data, contents, and output predictions are 
secret - even to the owners of the AI. (MPC)

◆ Price training data we cannot see competitively with other 
data which we also cannot not see (GT + STAKING + SC + 
PNP)

Potential Solution



Gradient Marketplaces
Introduction to 
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◆ Why: the AI Business Model has privacy problems

◆ How: an Introduction to the Core Technologies of 
OpenMined

◆ Federated Learning

◆ Homomorphic Encryption

◆Multi-Party Computation

◆ Gradient Marketplace

◆ Roadmap & Demos
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◆ January Hackathon: 29 Cities - 400+ online - 70+ In Person

◆ Growth Stats: 2400 Members in Slack - 145 GitHub Committers

◆ Recent Milestones:

◆ PyTorch over Peer-to-Peer - the foundation of Secure/Private AI

◆ OpenMined Grid - UK model trained in Canada in 15 secs - Jan 
24

◆ Reinforcement Learning - worked with Unity’s “ML Agents” Team

Status Update



◆ Federated Learning via PyTorch

◆ MPC Training via PyTorch

◆ Rapid Grid Payment via Coinbase

◆ Private Application Integration

Project Roadmap
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Demo
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Functional Encryption
Introduction to 

for Safe AI
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