
2019 - Slavo Matasovsky3

• RL Formalism
• RL Framework:

• Objective of Decision Making Agent
• Policies
• State-Value Function
• Optimality
• Action-Value Function
• Optimal Policy
• Policy Evaluation
• Policy Improvement
• Policy Iteration

• Monte Carlo Methods
• Temporal Difference Methods - SARSA, Q-Learning

Part I

2019 - Slavo Matasovsky4

Reinforcement Learning is a subfield of machine learning which addresses the
problem of automatic learning of optimal decisions over time.

RL is the task of learning through interaction. In this type of task, no human
labels data and no human collects or designs the collection of data. These machine
learning algorithms can be thought of as agents because of the need for interaction.
The agents need to learn to perform a specific task, like in other machine learning
paradigms. They also need to collect the most relevant data.

Very often, in RL, you must provide a reward signal. This signal is
fundamentally different from the labels in supervised learning. In RL, agents
receive reward signals for achieving a goal and not for specific agent behaviors.
Additionally, this signal is related to an obviously desired state like winning a game,
reaching an objective or location, and so on, which means that humans do not need
to intervene by labeling millions of samples.

Reinforcement Learning (RL)

2019 - Slavo Matasovsky5

Major RL entities: Agent and Environment
Communication channels: Actions, Reward, and Observations

RL Formalism

2019 - Slavo Matasovsky6

Reward
It's just a scalar value (number) we obtain periodically from the environment. It can
be positive or negative, large or small. The purpose of a reward is to give an
agent feedback about its success, and it's an important central thing in RL.
Basically, the term reinforcement comes from the fact that a reward
obtained by an agent should reinforce its behavior in a positive or
negative way. Reward is local, meaning, it reflects the success of the agent's
recent activity, not all the successes achieved by the agent so far.

The agent
It's somebody or something who/which interacts with the environment by
executing certain actions, taking observations, and receiving eventual rewards for
this. In most practical RL scenarios, it's our piece of software that is supposed to
solve some problem in a more-or-less efficient way.

RL Formalism

2019 - Slavo Matasovsky7

Environment
The environment is everything outside of an agent.The environment is external to
an agent, and its communication with the environment is limited by rewards
(obtained from the environment), actions (executed by the agent and given to the
environment), and observations (some information besides the rewards that the
agent receives from the environment).

Actions
Actions are things that an agent can do in the environment. In RL, we distinguish
between two types of actions: discrete or continuous.

Discrete actions form the finite set of mutually exclusive things an agent could
do, such as move left or right.

Continuous actions have some value attached to the action, such as a car's
action steer the wheel having an angle and direction of steering.

RL Formalism

2019 - Slavo Matasovsky8

States/Observations
State/observation of the environment is the second information channel for an
agent, with the first being a reward.

State/Observations can be as simple as a bunch of numbers or as complex as
several multidimensional tensors containing color images from several cameras,
position, velocity, angle and so on. An observation can even be discrete, much like
action spaces. An example of such a discrete observation space could be a light
bulb, which could be in two states: on or off, given to us as a Boolean value.

RL Formalism

2019 - Slavo Matasovsky9

The combination of these components—a set of states, a set of actions, the
representation of state changes and reward returns as a consequence of agent
actions make up a framework known as Markov Decision Processes (MDP) and
are commonly used to build sequential decision-making problems.

Markov Decision Process

2019 - Slavo Matasovsky10

Reinforcement learning is an interaction cycle between an agent, and an
environment. The cycle begins with the agent observing the environment. The
agent does some internal processing of the observation like learning or memorizing.
The agent then takes an action that will affect the environment in some way.

RL Framework: Objective of a Decision Making Agent

We start from the very
beginning at timestep
zero. The agent first
receives the environment
state which we denote by
S0, where zero stands for
a timestep zero of course.
Then, based on that
observation the agent
chooses an action, A0.
The environment
transitions to a new state,
S1, and gives some
reward, R1, to the agent.
The agent then chooses
an action, A1.

2019 - Slavo Matasovsky11

At an arbitrary time step t, the agent-environment interaction evolves as a
sequence of states, actions, and rewards. The reward will always be the
most relevant quantity to the agent.

RL Framework: Objective of a Decision Making Agent

2019 - Slavo Matasovsky12

The agent’s goal is to find a sequence of actions that will maximize the sum of
rewards during the course of an episode or the entire life of the agent, depending
on the task. The collection of rewards in a trajectory is called expected return.

RL Framework: Objective of a Decision Making Agent

2019 - Slavo Matasovsky13

• The agent seeks to find the strategy for choosing actions with the cumulative
reward is likely to be high.

• The agent can only accomplish this by interacting with the environment. This is
because at every timestep, the environment decides how much reward the
agent receives. In other words, the agent must play by the rules of the
environment.

• Through interaction, the agent can learn those rules and choose appropriate
actions to accomplish its goal.

• It's important to emphasize that all of this is just a mathematical model for a
real world problem.

RL Framework: Objective of a Decision Making Agent

2019 - Slavo Matasovsky14

What the agent needs to come up with is called a policy.

A policy is a function that returns an action for any given nonterminal
state.

Policies can be:

Deterministic - the policy maps states to actions.

For each state s∈S, it yields the action a∈A that the agent will choose while in
state s.

RL Framework: Policies

2019 - Slavo Matasovsky15

Stochastic - the policy will map a state to probabilities of selecting each possible
action at that state

For each state s∈S and action a∈A, it yields the probability π(a∣s) that the agent
chooses action a while in state s.

RL Framework: Policies

2019 - Slavo Matasovsky16

Gridworld Example

2019 - Slavo Matasovsky17

We have defined expected returns as a function of future rewards that the
agent is trying to maximize. We now define the value of states following a
policy: the value of a state s under policy π is the expectation of returns if the
agent follows policy π starting from state s. This definition is called the state-value
function and it simply represents the return an agent can expect to receive given
an environment state and following a given policy.

RL Framework: State-Value Function

2019 - Slavo Matasovsky18

For a general MDP, we have to work in terms of an expectation, since it's not often
the case that the immediate reward and next state can be predicted with certainty.
In fact, the reward and next state are chosen according to the one-step dynamics
of the MDP.

In case, where the reward r and next state s' are drawn from a (conditional)
probability distribution p(s',r|s,a), the Bellman Expectation Equation expresses
the value of any state s in terms of the expected immediate reward and
the expected value of the next state:

RL Framework: State-Value Function

2019 - Slavo Matasovsky19

Gridworld Example - State Values

2019 - Slavo Matasovsky20

A policy π is defined better than or equal to policy π’ if the expected
return is better than or equal to π’ for all states.

RL Framework: Optimality

2019 - Slavo Matasovsky21

Different Policies with Equal Value Functions

2019 - Slavo Matasovsky22

The value of a state depends on the value of taking actions in that state.
Therefore, we need a way to compare the values of taking any action in
any state, so that we can identify the best action and thereby come up
with the best policy. The action-value function is the expectation of returns if the
agent follows policy π starting from state s and taking action a.

RL Framework: Action-Value Function

2019 - Slavo Matasovsky23

Gridworld Example - Action Values

2019 - Slavo Matasovsky24

The optimal policy π∗ specifies for each environment state how the agent
should select an action towards its goal of maximizing reward. The agent
could structure its search for an optimal policy by first estimating the optimal
action-value function q∗, then, once q∗ is known, π∗ is obtained =>

RL Framework: Optimal Policy

2019 - Slavo Matasovsky25

An optimal policy is guaranteed to exist but may not be unique.

All optimal policies have the same state-value function v∗,
called the optimal state-value function.

All optimal policies have the same action-value function q∗, called
the optimal action-value function.

RL Framework: Optimal Policy

2019 - Slavo Matasovsky26

• If the state space S and action space A are finite, we can represent the optimal
action-value function q∗ in a table, where we have one entry for each possible
environment state s∈S and action a∈A.

• This is called a Q-table (“Q” for “quality” of the action). The columns will be the
actions. The rows will be the states.

• The value for a particular state-action pair s,a is the expected return if the agent
starts in state s, takes action a, and then henceforth follows the optimal
policy π∗.

RL Framework: Optimal Policy

2019 - Slavo Matasovsky27

Towards constructing the optimal policy, we can begin by selecting the entries
that maximize the action-value function, for each row (or state) - greedy
policy.

Under the optimal policy, the agent must choose action a2 when in state s1, and it
will choose action a3 when in state s2. As for state s3, the agent can choose either
action a1 or a2 under the optimal policy, but it can never choose action a3.

π∗(s1)=a2
π∗(s2)=a3

π∗(a1∣s3)=p, π∗(a2∣s3)=q, and π∗(a3∣s3)=0,

RL Framework: Optimal Policy

2019 - Slavo Matasovsky28

Before we can use optimal policy definition, however, we must devise an algorithm
for actually evaluating any arbitrary policy.

The policy evaluation algorithm consists of calculating the state-value function
for a given policy by iteratively sweeping through the state space and improving an
estimate from an estimate.

We refer to the type of algorithm that takes in a policy and outputs a value function
as an algorithm that solves the prediction problem; calculating the values of a
given policy.

Such algorithm is known as policy evaluation.

RL Framework: Policy Evaluation

2019 - Slavo Matasovsky29

To improve a policy we use state-value function calculated from policy
evaluation and then readjust the policy by creating a new policy that
takes the action with maximum value.

RL Framework: Policy Improvement

2019 - Slavo Matasovsky30

We can combine the policy evaluation and policy improvement algorithms
to find better and better policies until we find the optimal state-value
function and at least one optimal policy.

If we iterate on a random policy between evaluation and improvement, we will
monotonically reach a unique fixed point that will indicate we have arrive to the
optimal state-value function and therefore an optimal policy. This algorithm is
called policy iteration.

RL Framework: Policy Iteration

2019 - Slavo Matasovsky31

Monte Carlo Prediction - estimates action-value functions using complete
episodes. In the algorithm for MC prediction, we begin by collecting many
episodes with the policy. Then, we note that each entry in the Q-table corresponds
to a particular state and action. To populate an entry, we use the return that
followed when the agent was in that state, and chose the action. In the event that
the agent has selected the same action many times from the same state, we need
only average the returns.

Monte Carlo Methods

2019 - Slavo Matasovsky32

Monte Carlo methods require us to complete an entire episode of interaction
before updating the Q-table.

Monte Carlo Methods

2019 - Slavo Matasovsky33

Greedy Policies

A policy is greedy with respect to an action-value function estimate Q if for
every state s∈S, it is guaranteed to select an action a∈A(s) such that a = argmax
a∈A(s) Q(s,a). It is common to refer to the selected action as the greedy action.

Epsilon-Greedy Policies

A policy is �-greedy with respect to an action-value function estimate Q if for every
state s∈S,
• with probability 1-�, the agent selects the greedy action, and
• with probability �, the agent selects an action uniformly at random from the set

of available (non-greedy AND greedy) actions.

Monte Carlo Methods

2019 - Slavo Matasovsky34

Once the Q-table closely approximates the action-value function qπ, the agent can
construct the policy π′ that is �-greedy with respect to the Q-table, which will yield
a policy that is better than the original policy π.

Furthermore, if the agent alternates between these two steps, policy evaluation
and policy improvement:

Step 1: using the policy π to construct the Q-table, and
Step 2: improving the policy by changing it to be �-greedy with respect to the
Q-table

we will eventually obtain the optimal policy π∗.

Monte Carlo Methods

2019 - Slavo Matasovsky35

To get the greedy action(s), for each row in the table, we need only select the
action (or actions) corresponding to the column(s) that maximize the row.

Monte Carlo Methods

2019 - Slavo Matasovsky36

MC Control

Monte Carlo Methods

2019 - Slavo Matasovsky37

Temporal Difference (TD) methods update the Q-table after every time step.
TD prediction bootstraps a guess from a guess

SARSA Algorithm - it uses the Q-value at the next step of the action as the result
of the current policy, to update the Q-value of the current state-action pair.

Temporal Difference Methods - SARSA

2019 - Slavo Matasovsky38

SARSA Algorithm Pseudocode

Temporal Difference Methods - SARSA

2019 - Slavo Matasovsky39

Q-Learning Algorithm - is a popular off-policy learning algorithm, and it is similar
to SARSA, except for one thing. Instead of using the Q value estimate for the new
state and the action that the agent took in that new state, it uses the Q value
estimate that corresponds to the action that leads to the maximum
obtainable Q value from that new state, S'.

Temporal Difference Methods - Q-Learning

2019 - Slavo Matasovsky40

Q-Learning Algorithm Pseudocode

On-policy learning is learning to optimize a policy as we used it and it couples behavior and
optimization into the same policy, while off-policy learning decouples learning from behavior,
allowing your agent to learn from different sources.

The off-policy TD control algorithm is called Q-learning, and it is probably the most popular
version of "tabular" reinforcement learning.

It is also the base of perhaps the most popular deep reinforcement learning algorithm, Deep Q-
networks (DQN).

Temporal Difference Methods - Q-Learning

2019 - Slavo Matasovsky41

• Return in Monte Carlo method depends on many random variables within a
single episode: you take multiple actions, transition multiple times, and receive
multiple rewards. That adds high variance because the randomness
accumulates within the same episode and estimates could wildly differ from one
episode to another.

• The Temporal Difference updates have much lower variance than the return
we use in Monte-Carlo updates. The Temporal Difference algorithm depends
only on a single action, a single transition, a single reward, and a single next-
state estimate. Temporal Difference is said to be a biased estimate of the true
state-value function.

Monte Carlo vs Temporal Difference Methods

2019 - Slavo Matasovsky42

• From Reinforcement Learning to Deep Reinforcement
Learning

• Value Based Methods
• Implementing DQN Agent
• Implementing Dueling DQN Agent (TBD)

• Policy Gradient Methods
• Implementing A2C Agent (TBD)
• Implementing DDPG Agent
• Implementing MADDPG Agent
• Implementing SAC Agent (TBD)

Part II

2019 - Slavo Matasovsky43

High-Dimensional State Space

• The main drawback of 'tabular' reinforcement learning is that the use of a table
to represent value functions is no longer practical in complex problems.
Environments can have high-dimensional state spaces, meaning that the
number of variables that comprise a single state is very large.

Continuous State Space

• Environments can also have continuous variables, meaning that the number of
values a single variable can be is infinite. For instance, the position and angles
of a robot can be of infinitesimal precision; it could be 1.56 or 1.5683 or
1.5683256 and so on.

And of course, there are environments that have both high-dimensional and
continuous variables

From Reinforcement Learning to Deep Reinforcement
Learning

2019 - Slavo Matasovsky44

Function Approximators - Using neural networks to approximate Q-
functions

• Neural networks are shown to be effective as universal function approximators.
In fact, there is a universal approximation theorem that states that a single
hidden layer feedforward neural network can approximate any continuous
function that is closed and bounded in. It basically means that even simple
(shallow) neural networks can approximate several functions.

• In environments with high-dimensional or continuous state spaces there is really
no practical reason to create a table to store value functions. Sure, discretizing
or binning the values could make tables possible. But, again, even if we could
engineer a way to use tables and store our value functions there, by doing so,
we'd be missing out on the advantages of generalization.

From Reinforcement Learning to Deep Reinforcement
Learning

2019 - Slavo Matasovsky45

Generalization

• We would like our agents to generalize for example that 0.1 units away from the
center is similar to 0.2, at least more so than 2.4.

• Action-value functions often have some underlying relationship that agents can
exploit.

• We want to use generalization because it is a more efficient use of experiences.
With function approximation, such as neural networks, agents learn and exploit
patterns with less data (and perhaps faster).

From Reinforcement Learning to Deep Reinforcement
Learning

2019 - Slavo Matasovsky46

From Reinforcement Learning to Deep Reinforcement
Learning

2019 - Slavo Matasovsky47

Value Functions - the state-value function V(s), though useful for many purposes,
is not sufficient on its own to solve the control problem. Finding V(s) helps you
know how much expected cumulative discounted future rewards you will obtain
from state "s" and using policy π thereafter.

The action-value function Q(s,a) solves the control problem. If we had the
values of state and action pairs, we could differentiate the actions that would lead
us to, either gain information, in the case of an exploratory action, or maximize
total expected reward, in the case of a greedy action.

Value Based Methods

2019 - Slavo Matasovsky48

Deep Q-Network - we will be approximating the action-value function Q(s,a),
just like in Q-learning. We refer to the approximate action-value function as Q(s,a;
w); that mean Q is parameterized by "w", the weights of a neural network,
and indexed by a state "s" and an action "a".

Value Based Methods

2019 - Slavo Matasovsky49

What to optimize

We can use the same principles as for policy iteration in which we alternate
between policy evaluation and policy improvement.

We will start with a randomly initialized action-value function (and policy), evaluate
it by sampling actions from it, improve it with an exploration strategy such as
epsilon-greedy, then evaluate again, improve it, and so on.

There are multiple ways we can evaluate any given policy. More specifically, there
are different targets we can use for estimating the values of a policy π.

The core targets in reinforcement learning are the Monte-Carlo (MC)
target and the Temporal-Difference (TD) target.

Value Based Methods

2019 - Slavo Matasovsky50

TD - Temporal Difference targets

There are two main ways to bootstrap the TD target we can either use the action-
value function of the action actually taken at landing state, or we can use
the value of the best action.

On-policy and off-policy TD targets

Value Based Methods

2019 - Slavo Matasovsky51

Q-Learning Target

We will use the off-policy TD target used by the Q-learning algorithm. To get an
objective function, we simply need to substitute the true optimal action-value
function q*(s,a) in the ideal objective equation by this target.

Value Based Methods

2019 - Slavo Matasovsky52

Loss Function

A loss function is a measure of how well our neural network predictions are. In
supervised learning, it is more straightforward to interpret the loss function: given
a batch of predictions and their corresponding true values, the loss function
computes a distance score indicating how well the network has done in this batch.

The challenge in reinforcement learning, as compared to supervised learning is that
our "true values" are also predictions coming from the network. MSE (or L2 loss) is
defined as the average squared difference between the predicted and true
values; in our case, the “predicted values” are the predicted values of the action-
value function. But the “true values” are, the TD targets.

Value Based Methods

2019 - Slavo Matasovsky53

Deep Q-Learning Algorithm:

1. Initialize parameters for Q(s, a) and Qˆ(s, a) with random weights, epsilon ← 1.0, and
empty replay buffer (Qˆ(s, a) is target network)

2. With probability epsilon, select a random action a, otherwise a = arg maxa Q s,a

3. Execute action in environment and observe reward r and the next state s′

4. Store transition (s, a, r, s′) in the replay buffer (buffer size=10000)

5. Sample a random minibatch (batch size = 64) of transitions from the replay buffer

6. For every transition in the buffer, calculate target y = r if the episode has ended at this
step or y = r + γ maxa'∈Aa' Q ˆs',a' otherwise A discount factor - gamma of 0.99 is applied.

7. Calculate MSE loss: L = (Qs,a − y)2

8. Update Q(s, a) using the SGD algorithm by minimizing the loss in respect to model
parameters. The learning rate for Adam optimizer (LR) = 0.0001.

9. Every 4 steps copy weights from local Q-network to target Q-network. The target
network is frozen for several time steps and then the target network weights are
updated by copying the weights from the actual Q network. Freezing the target
network for a while and then updating its weights with the actual Q network weights
stabilizes the training. The fractional update was controlled by the parameter tau
which was set to 0.001.

Value Based Methods

2019 - Slavo Matasovsky54

Stabilizing Deep Reinforcement Learning

Unfortunately, reinforcement learning is notoriously unstable when neural networks
are used to represent the action values.

Common problems in value-based deep reinforcement learning
• The first problem is the non-stationarity of the target values. These are the

targets we use to train our network with, but these targets are calculated using
the network itself.

• The second problem is the non-compliance with the IID assumption of the
data. Samples collected from trajectories are correlated and also not identically
distributed as they depend on the policy that generates the actions.

The Deep Q-Learning algorithm addresses these instabilities by using two key
features:
• Experience Replay
• Fixed Q-Targets

Value Based Methods

2019 - Slavo Matasovsky55

Fixed Q-Targets

In supervised learning, the targets are the labels on your dataset and are
fixed throughout training. In reinforcement learning these targets would move
freely with every training step of the network. At every update, we improve the
value function and therefore change the shape of possibly the entire function. That
means the target values change as well. Which means, our estimates are invalid
with every update, since they have already changed.

A straightforward way to make target values more stationary is to have a separate
network which we can fix for multiple steps and use it to calculate more stable
target values. This network is called target network, as it is used to calculate
targets.

By having a target network and fixing our target values, we mitigate the "chasing
your own tail" issue by artificially creating multiple small supervised learning
problems: Our targets are now fixed for as many steps as we fix our target
network.

Value Based Methods

2019 - Slavo Matasovsky56

Experience Replay

• By sampling at random we increase the probability that our updates to the
neural network will have less variance.

• When we use the batch, most of the samples in that batch were correlated and
similar. Updating with similar samples concentrates the updates we make to our
neural network to a limited area of our function, and it potentially over-
emphasizes the magnitude of the updates.

• If we sample uniformly at random from a very large buffer, on the other hand,
chances are our updates to the network will be better distributed all across, and
therefore more representative of the true function.

• Using a replay buffer also gives the impression our data is IID, so optimization
methods will be better behaved. Samples will seem independent and identically
distributed because we will be sampling from multiple trajectories and policies
at once.

Value Based Methods

2019 - Slavo Matasovsky57

Prioritized Experience Replay

• The replay buffer is used to break the correlation between immediate transitions
in our episodes. The examples agent experiences during the episode will be
highly correlated, as most of the time the environment is "smooth" and doesn't
change much according to our actions. However, the SGD method assumes that
the data we use for training has a i.i.d. property. To solve this problem, the
classic DQN method used a large buffer of transitions, randomly sampled to get
the next training batch.

• The main concept of prioritized replay is the criterion by which the importance of
each transition is measured. One idealised criterion would be the amount the RL
agent can learn from a transition in its current state. A reasonable proxy for this
measure is the magnitude of a transition’s TD error δ, which indicates how
‘surprising’ or unexpected the transition is.

Value Based Methods

2019 - Slavo Matasovsky58

Experience/Replay Buffer

Value Based Methods

2019 - Slavo Matasovsky59

The Deep Convolutional Q-Network - PyTorch implementation

class QNetwork(nn.Module):
 def __init__(self, input_shape, n_actions):
 super(QNetwork, self).__init__()

 self.conv = nn.Sequential(
 nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
 nn.ReLU(),
 nn.Conv2d(32, 64, kernel_size=4, stride=2),
 nn.ReLU(),
 nn.Conv2d(64, 64, kernel_size=3, stride=1),
 nn.ReLU()
)

 conv_out_size = self._get_conv_out(input_shape)
 self.fc = nn.Sequential(
 nn.Linear(conv_out_size, 128),
 nn.ReLU(),
 nn.Linear(128, n_actions)
)

 def _get_conv_out(self, shape):
 o = self.conv(torch.zeros(1, *shape))
 return int(np.prod(o.size()))

 def forward(self, x):
 conv_out = self.conv(x).view(x.size()[0], -1)
 return self.fc(conv_out)

 Implementing Deep Q-Learning Agent

2019 - Slavo Matasovsky60

The Deep Convolutional Q-Network

 Implementing Deep Q-Learning Agent

2019 - Slavo Matasovsky61

The Deep Q-Learning Agent - PyTorch implementation

class Agent():
 """Interacts with and learns from the environment."""

 def __init__(self, input_shape, action_size, seed):
 """Initialize an Agent object.

 Params
 ======
 state_size (int): dimension of each state
 action_size (int): dimension of each action
 seed (int): random seed
 """
 self.state_size = input_shape
 self.action_size = action_size
 self.seed = random.seed(seed)

 # Q-Network
 self.qnetwork_local = QNetwork(input_shape, action_size).to(device)
 self.qnetwork_target = QNetwork(input_shape, action_size).to(device)
 self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

 self.prioritized_replay_alpha = 0.6
 self.prioritized_replay_beta0 = 0.4
 self.prioritized_replay_beta_iters = 100000

 # Replay memory
 self.memory = PrioritizedReplayBuffer(BUFFER_SIZE, alpha=self.prioritized_replay_alpha)
 self.beta_schedule = LinearSchedule(self.prioritized_replay_beta_iters,
 initial_p=self.prioritized_replay_beta0,
 final_p=1.0)

 # Initialize time step (for updating every UPDATE_EVERY steps)
 self.t_step = 0

 Implementing Deep Q-Learning Agent

2019 - Slavo Matasovsky62

The Deep Q-Learning Agent - PyTorch implementation

 def step(self, state, action, reward, next_state, done):
 # Save experience in replay memory
 self.memory.add(state, action, reward, next_state, done)

 # Learn every UPDATE_EVERY time steps.
 self.t_step = (self.t_step + 1) % UPDATE_EVERY
 if self.t_step == 0:
 # If enough samples are available in memory, get random subset and learn
 if len(self.memory) > BATCH_SIZE:
 experiences = self.memory.sample(BATCH_SIZE, beta=self.beta_schedule.value(len(self.memory)))
 self.learn(experiences, GAMMA)

 def act(self, state, eps=0.):
 """Returns actions for given state as per current policy.

 Params
 ======
 state (array_like): current state
 eps (float): epsilon, for epsilon-greedy action selection
 """
 self.qnetwork_local.eval()
 with torch.no_grad():
 action_values = self.qnetwork_local(state)
 self.qnetwork_local.train()

 # Epsilon-greedy action selection
 if random.random() > eps:
 return np.argmax(action_values.cpu().data.numpy())
 else:
 return random.choice(np.arange(self.action_size))

 Implementing Deep Q-Learning Agent

2019 - Slavo Matasovsky63

The Deep Q-Learning Agent - PyTorch implementation

 def learn(self, experiences, gamma):
 """Update value parameters using given batch of experience tuples.
 Params
 ======
 experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
 gamma (float): discount factor
 """
 states, actions, rewards, next_states, dones, weights, idxes = experiences

 # Get max predicted Q values (for next states) from target model
 Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)

 # Compute Q targets for current states
 Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

 # Get expected Q values from local model
 Q_expected = self.qnetwork_local(states).gather(1, actions)

 # Compute loss
 losses_v = weights * (Q_expected - Q_targets) ** 2
 loss = losses_v.mean()
 prios = losses_v + 1e-5

 # Minimize the loss
 self.optimizer.zero_grad()
 loss.backward()
 self.optimizer.step()

 # Update replay buffer priorities
 self.memory.update_priorities(idxes, prios.data.cpu().numpy())

 # Update target network
 self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

 Implementing Deep Q-Learning Agent

2019 - Slavo Matasovsky64

The Deep Q-Learning Agent - PyTorch implementation

 def soft_update(self, local_model, target_model, tau):
 """Soft update model parameters.
 θ_target = τ*θ_local + (1 - τ)*θ_target
 Params
 ======
 local_model (PyTorch model): weights will be copied from
 target_model (PyTorch model): weights will be copied to
 tau (float): interpolation parameter
 """

 for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
 target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)

 Implementing Deep Q-Learning Agent

2019 - Slavo Matasovsky65

Why Policy?

There are several reasons why policy might be an interesting topic to explore.

• Policy is what we’re looking for when we’re solving a Reinforcement Learning
(RL) problem. When the agent obtains the observation and needs to make a
decision about what to do next, we need policy, not the value of the state or
particular action. We do care about the total reward, but at every state, we may
have little interest in the exact value of the state.

• Environments with lots of actions or, in the extreme, with a continuous action
space. To be able to decide on the best action to take having Q(s, a), we need to
solve a small optimization problem finding a, which maximizes Q(s, a).

• Stochasticity - policy is naturally represented as the probability of actions.

Policy Gradient Methods

2019 - Slavo Matasovsky66

Policy Gradients - Introduction

In Deep Q-Learning based intelligent agent implementation, we use a deep neural
network as the function approximator to represent the action-value
function. The agent then uses the action-value function to come up with a policy
based on the value function. In particular, we use the epsilon-greedy algorithm.

Ultimately the agent has to know what actions are good to take given an
observation/state. Instead of parametrizing or approximating a state/action action
function and then deriving a policy based on that function, can we not parametrize
the policy directly? Yes we can! That is the exact idea behind policy gradient
methods.

Policy Gradient Methods

2019 - Slavo Matasovsky67

In policy gradient based methods, the policy is represented by using a neural
network, and the goal is to find the best set of parameters . This can be intuitively
seen as an optimization problem where we are trying to optimize the objective of
the policy to find the best-performing policy.

Objective of the agent's policy
We know that the agent should achieve maximum rewards in the long term, in
order to complete the task or achieve the goal. If we can formulate that objective
mathematically, we can use optimization techniques to find the best policy for the
agent to follow for the given task.

The Policy Gradient Theorem

∇J ≈ E[Q(s, a)∇ log π(a|s)]

PG defines the direction in which we need to change our network’s parameters to
improve the policy in terms of the accumulated total reward. The scale of the
gradient is proportional to the value of the action taken, which is Q(s, a) and the
gradient itself is equal to the gradient of log-probability of the action taken.
Intuitively, this means that we’re trying to increase the probability of
actions that have given us good total reward and decrease the probability
of actions with bad final outcomes.

Policy Gradient Methods

2019 - Slavo Matasovsky68

• The PG (Policy Gradients) variance depends on total discounted reward that
changes over time. To overcome this, we can subtract the mean total reward
from the Q-value and obtain mean baseline.

• The PG variance can be further reduced by making the baselines state-
dependent, which, intuitively, is a good idea, as different states could have very
different baselines. Indeed, to decide about the suitability of a particular
action in some state, we're using the discounted total reward of the action.

• The total reward itself could be represented as a value of the state
plus advantage of the action: Q(s, a) = V(s) + A(s, a).

Actor-Critic Methods

2019 - Slavo Matasovsky69

Actor-Critic Methods

2019 - Slavo Matasovsky70

• There are two components in the actor-critic algorithm.

• The actor is responsible for acting in the environment, which involves taking
actions, given observations about the environment and based on the agent's
policy. The actor can be thought of as the policy holder/maker.

• The critic takes care of estimating the state-value, or state-action-value,
or advantage-value function (depending on the variant of the actor-critic
algorithm used).

• Actor-Critic variants:
• A2C - Advantage Actor-Critic - The action-value actor-critic (where

critic estimates action-value function) algorithm still has high variance. We
can reduce the variance by subtracting a baseline function, B(s), from the
policy gradient. A good baseline is the state value function.

• A3C - Asynchronous Advantage Actor-Critic

Actor-Critic Methods

2019 - Slavo Matasovsky71

• DDPG is a variation of the actor-critic method, but has a very nice property of
being off-policy. In actor-critic, the actor estimates the stochastic policy, which
returns the probability distribution over discrete actions or for continuous
action spaces the parameters of normal distribution.

• Deterministic policy gradients belongs to the actor-critic family, but
the policy is deterministic, which means that it directly provides us
with the action to take from the state. This makes it possible to apply the
chain rule to the Q-value, and by maximizing the Q, the policy will be improved
as well.

• The role of actor is to return the action to take for every given state. In
a continuous action domain, every action is a number, so the actor network will
take the state as an input and return N values, one for every action. This
mapping will be deterministic, as the same network always returns the same
output if the input is the same.

• The role of the critic is to estimate the Q-value, which is a discounted
reward of the action taken in some state. The critic net accepts two inputs:
the state and the action. The output from the critic will be the single
number, which corresponds to the Q-value.

Implementing DDPG - Deterministic Deep Policy Gradient
Agent

2019 - Slavo Matasovsky72

• We have two functions represented by deep neural networks, one is
the actor, let's call it µ(s), which converts the state into the action and
the other is the critic, by the state and the action giving us the Q-
value: Q(s, a). We can substitute the actor function into the critic and get the
expression with only one input parameter of our state: Q(s, µ(s)).

• The output of the critic gives us the approximation of the entity we're
interested in maximizing in the first place: the discounted total reward.
This value depends not only on the input state, but also on parameters of the θµ
actor and the θQ critic networks. At every step of our optimization, we want to
change the actor's weights to improve the total reward that we want to get. In
mathematical terms, we want the gradient of our policy.

• In his deterministic policy gradient theorem, David Silver has proved that
stochastic policy gradient is equivalent to the deterministic policy
gradient. In other words, to improve the policy, we just need to calculate the
gradient of the Q(s, µ(s)) function.

• By applying the chain rule, we get the gradient: ∇aQ(s,a)∇θµµ(s).

Implementing DDPG - Deterministic Deep Policy Gradient
Agent

2019 - Slavo Matasovsky73

• The DDPG model consists of two separate networks for the actor and
critic

• The actor is fully connected feed-forward network with two hidden layers,
RELU activation and Batch Normalization. The input is an observation/state
vector, while the output is a vector with N values, one for each action. The
output actions are transformed with hyperbolic tangent non-linearity to squeeze
the values to the -1..1 range.

Implementing DDPG - Deterministic Deep Policy Gradient
Agent

2019 - Slavo Matasovsky74

class Actor(nn.Module):
 """Actor (Policy) Model."""
 def __init__(self, state_size, action_size, seed, fc1_units=128, fc2_units=128):
 """Initialize parameters and build model.
 Params
 ======
 state_size (int): Dimension of each state
 action_size (int): Dimension of each action
 seed (int): Random seed
 fc1_units (int): Number of nodes in first hidden layer
 fc2_units (int): Number of nodes in second hidden layer
 """
 super(Actor, self).__init__()
 self.seed = torch.manual_seed(seed)

 self.model = nn.Sequential(
 nn.BatchNorm1d(state_size),
 nn.Linear(state_size, fc1_units),
 nn.ReLU(),
 nn.BatchNorm1d(fc1_units),
 nn.Linear(fc1_units, fc2_units),
 nn.ReLU(),
 nn.BatchNorm1d(fc2_units),
 nn.Linear(fc2_units, action_size),
 nn.Tanh()
)

 self.model.apply(self.init_weights)

 def init_weights(self, m):
 if type(m) == nn.Linear:
 nn.init.xavier_uniform_(m.weight)
 m.bias.data.fill_(0.1)

 def forward(self, state): #takes in state/observation and outputs continuous action values
 return self.model(state)

Implementing DDPG - Deterministic Deep Policy Gradient
agent

2019 - Slavo Matasovsky75

• The critic includes two separate paths for observation and the actions,
and those paths are concatenated together to be transformed into the critic
output of one number. The forward() function of the critic first transforms the
observations with its first network - model_input, then concatenates the output
and given actions to transform them using second network – model_output into
one single value of Q.

Implementing DDPG - Deterministic Deep Policy Gradient
Agent

2019 - Slavo Matasovsky76

class Critic(nn.Module):
 """Critic (Value) Model."""

 def __init__(self, state_size, action_size, seed, fc1_units=128, fc2_units=128):
 """Initialize parameters and build model.
 Params
 ======
 state_size (int): Dimension of each state
 action_size (int): Dimension of each action
 seed (int): Random seed
 fcs1_units (int): Number of nodes in the first hidden layer
 fc2_units (int): Number of nodes in the second hidden layer
 """
 super(Critic, self).__init__()

 self.seed = torch.manual_seed(seed)

 self.model_input = nn.Sequential(
 nn.Linear(state_size, fc1_units),
 nn.ReLU(),
 nn.BatchNorm1d(fc1_units),
)

 self.model_output = nn.Sequential(
 nn.Linear(fc1_units + action_size, fc2_units),
 nn.ReLU(),
 nn.Linear(fc2_units, 1),
)

 self.model_input.apply(self.init_weights)
 self.model_output.apply(self.init_weights)

 def forward(self, state, action): #takes in state/observation and action and outputs action value
 i = torch.cat([self.model_input(state), action], dim=1)
 return self.model_output(i)

Implementing DDPG - Deterministic Deep Policy Gradient
Agent

2019 - Slavo Matasovsky77

The Agent.act method - converts the observations into the appropriate form and
ask the actor network to convert them into deterministic actions. Then it adds the
exploration noise by applying the OU process. Lastly, it clips the actions to enforce
them to fall into the -1..1 range.

 def act(self, state, add_noise=True):

 """Returns actions for given state as per current policy."""
 state = torch.from_numpy(state).float().unsqueeze(0).to(device)

 self.actor_local.eval()
 with torch.no_grad():

 action = self.actor_local(state).cpu().data.numpy()
 self.actor_local.train()

 if add_noise:
 action += self.noise.sample()
 return np.clip(action, -1, 1)

DDPG - Deterministic Deep Policy Gradient Agent

2019 - Slavo Matasovsky78

The Agent.learn method - on every iteration, we store the experience into the
replay buffer and sample the training batch. Agent performs two separate training
steps.

1.) To train the critic, we need to calculate the target Q-value using the
one-step Bellman equation, with the target critic network as the
approximation of the next state, then we calculate the MSE loss and ask the
critic's optimizer to tweak the critic weights.
---------------------------- update critic ----------------------------
Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
Compute Q targets for current states (y_i)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
Compute critic loss
Q_expected = self.critic_local(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
torch.nn.utils.clip_grad_norm(self.critic_local.parameters(), 1)
self.critic_optimizer.step()

DDPG - Deterministic Deep Policy Gradient agent

2019 - Slavo Matasovsky79

2.) To train actor, we need to update the actor's weights in a
direction that will increase the critic's output. As both the actor and
critic are represented as differentiable functions, what we need to do is just
pass the actor's output to the critic and then minimize the negated value
returned by the critic.

The negated output of the critic could be used as a loss to backpropagate it to
the critic network and, finally, the actor. We don't want to touch the critic's
weights, so it's important to ask only the actor's optimizer to do the
optimization step. The weights of the critic will still keep the gradients from
this call, but they will be discarded on the next optimization step.

---------------------------- update actor ----------------------------
Compute actor loss
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()

DDPG - Deterministic Deep Policy Gradient agent

2019 - Slavo Matasovsky80

As the last step of the training loop, we perform the target networks update
using so called ‘soft sync’. The soft sync is carried out on every step, but only a
small ratio of the optimized network's weights are added to the target network.
This makes a smooth and slow transition from old weight to the new ones.

 def soft_update(self, local_model, target_model, tau):
 """Soft update model parameters.
 θ_target = τ*θ_local + (1 - τ)*θ_target

 Params
 ======
 local_model: PyTorch model (weights will be copied from)
 target_model: PyTorch model (weights will be copied to)
 tau (float): interpolation parameter
 """
 for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
 target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)

DDPG - Deterministic Deep Policy Gradient agent

2019 - Slavo Matasovsky81

• Traditional reinforcement learning approaches such as Q-Learning or policy
gradient are poorly suited to multi-agent environments. One issue is that each
agent’s policy is changing as training progresses, and the environment becomes
non-stationary from the perspective of any individual agent (in a way that is not
explainable by changes in the agent’s own policy). This presents learning
stability challenges and prevents the straightforward use of past experience
replay, which is crucial for stabilizing deep Q-learning. Policy gradient methods,
on the other hand, usually exhibit very high variance when coordination of
multiple agents is required.

• The goal of Multi-Agent DDPG algorithm is to operate under under the
following constraints:

1.) the learned policies can only use local information (i.e. their own
observations) at execution time
2.) it does not assume a differentiable model of the environment dynamics
3.) it does not assume any particular structure on the communication method
between agents

• The Multi-Agent DDPG algorithm accomplishes the above mentioned constraints
by adopting the framework of centralized training with decentralized execution.

Implementing MADDPG - Multi-Agent Deterministic Deep
Policy Gradient Algorithm

2019 - Slavo Matasovsky82

• The Multi-Agent DDPG algorithm is an extension of actor-critic policy
gradient methods where the critic is augmented with extra information
about the policies of other agents.

• A primary motivation behind MADDPG is that, if we know the actions taken by
all agents, the environment is stationary even as the policies change. This is not
the case if we do not explicitly condition on the actions of other agents, as done
for most traditional RL methods.

• MADDPG is a multi-agent version of DDPG. DDPG is well suited to continuous
control tasks and this just extends it to a multi-agent scenario. More details can
be found in the https://arxiv.org/abs/1706.02275.

Implementing MADDPG - Multi-Agent Deterministic Deep
Policy Gradient Algorithm

2019 - Slavo Matasovsky83

• Some of the most successful RL algorithms in recent years such as Trust Region
Policy Optimization (TRPO), Proximal Policy Optimization (PPO) and
Asynchronous Actor-Critic Agents (A3C) suffer from sample inefficiency. This
is because they learn in an “on-policy” manner, i.e. they need completely new
samples after each policy update.

• In contrast, Q-learning based “off-policy” methods such as Deep Deterministic
Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient
(TD3PG) are able to learn efficiently from past samples using experience replay
buffers. However, the problem with these methods is that they are very
sensitive to hyperparameters and require a lot of tuning to get them to
converge.

• Soft Actor-Critic follows in the tradition of the latter type of algorithms and adds
methods to combat the convergence brittleness.

Implementing SAC - Soft Actor-Critic Agent

2019 - Slavo Matasovsky84

• Exploration
• Intrinsic Motivation

• Imitation
• Curiosity

• Go-Explore

Part III

2019 - Slavo Matasovsky85

OpenAI Baselines
https://github.com/openai/baselines

OpenAI Spinning Up
https://spinningup.openai.com/en/latest/

OpenAI Gym
https://gym.openai.com/

Unity ML Agents
https://github.com/Unity-Technologies/ml-agents

Dopamine
https://github.com/google/dopamine

Garage
https://github.com/rlworkgroup/garage

Resources

